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Abstract

The classical problem of the fully developed mixed convection flow with frictional heat generation in a vertical chan-
nel bounded by isothermal plane walls having the same temperature is revisited in this paper. The existence of dual solu-
tions of the local balance equations is pointed out. They are either columnar upflows or cellular down–up–down flows.
Below a maximum value Nmax of the governing parameter N = GePrRe (the product of the Gebhart, Prandtl and Rey-
nolds numbers), for any given N a pair of different solutions occurs. The value Nmax corresponds to a maximum value of
the Reynolds number above which no laminar solution can be found. At this maximum value, the two solution
branches bifurcate from each other. In the neighborhood of the bifurcation point Nmax even small perturbations can
cause transitions from one flow regime to the other. In the paper, the mechanical and thermal characteristics of the dual
flow regimes are discussed in detail both analytically and numerically.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Buoyancy induced flows in ducts deserve wide atten-
tion mainly for their engineering applications in several
thermal control devices ranging from electronics to nu-
clear plants. Indeed, in passive or semi-passive thermal
control systems, either purely free convection flows or
mixed convection flows are involved.

Obtaining analytical solutions for mixed convection
problems in vertical or inclined ducts has been the sub-
ject of several papers in the latter decades [1–5]. The
0017-9310/$ - see front matter � 2005 Elsevier Ltd. All rights reserv
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importance of such analytical solutions, which refer to
laminar fully developed flows, relies on the chance to
obtain non-trivial benchmarks to test the reliability of
numerical codes developed for more complex geometries
or for non-parallel flows. Moreover, analytical solutions
are often an opportunity to inspect the internal consis-
tency of the mathematical models and of the approxima-
tions adopted, as well as to develop new theoretical
results. For instance, in Ref. [5], a novel criterion to
choose the reference temperature when adopting the
Boussinesq approximation in duct flows has been
proposed.

The theoretical investigations on fully developed
mixed convection in vertical or inclined ducts are
often devoted to a description of the changes on the
velocity profiles induced by buoyancy as well as to the
ed.
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Nomenclature

An dimensionless coefficients, Eq. (28)
Bn dimensionless coefficients, Eq. (33)
Br Brinkman number, ¼ lU2

m=½kðT ð0Þ � T 0Þ�,
Eq. (45)

cp specific heat at constant pressure
g acceleration due to gravity
Ge Gebhart number, = 4Lgb/cp, Eq. (16)
h dimensionless heat transfer coefficient, Eq.

(44)
k thermal conductivity
L channel half-width
p pressure
P difference between the pressure and the

hydrostatic pressure
Pr Prandtl number, = lcp/k, Eq. (16)
Re Reynolds number, = 4LUm/m, Eq. (16)
Remax maximum allowed value of Re
T temperature
T0 wall temperature
Tr reference temperature
u dimensionless velocity, = U/Um, Eq. (16)

U X-component of the fluid velocity
Um mean fluid velocity, Eq. (10)
V fluid velocity vector
X,Y Cartesian coordinates
y dimensionless transversal coordinate

Greek symbols

a dimensionless parameter, = d//dyjy=0, Eq.
(26b)

b coefficient of thermal expansion
/ dimensionless velocity gradient, = (N/16)du/

dy, Eq. (21)
k dimensionless parameter, = �(1/N)d//

dyjy=1, Eq. (42)
l dynamic viscosity
m kinematic viscosity, m = l/q
q mass density evaluated at the reference tem-

perature
N dimensionless parameter, = GePrRe, Eq.

(16)
Nmax maximum allowed value of N
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determination of the conditions for the onset of flow
reversal (crossover from a columnar to a cellular flow).
Indeed, the flow reversal phenomenon arises when buoy-
ancy forces are so strong that there exists a domain with-
in the duct where the local fluid velocity has a direction
opposite to the mean fluid flow. These studies are often
based on the assumption that the effect of viscous dissi-
pation in the fluid is negligible. This assumption holds
whenever the fluid has a sufficiently high thermal con-
ductivity, a sufficiently small Prandtl number and suffi-
ciently high wall heat fluxes are present. On the other
hand, other theoretical investigations have been devoted
to the analysis of the interplay between the effect of vis-
cous dissipation and the effect of buoyancy [6–14]. These
theoretical studies present either analytical or numerical
solutions of the local momentum balance equations
under the Boussinesq approximation. From a mathe-
matical point of view, viscous heating is represented by
a non-linear term (the dissipation function) in the local
energy balance equation. Non-linearities due both to
inertia and to viscous heating are usually neglected when
studying fully developed mixed convection flows in ver-
tical channels. As a consequence, the analysis of such
flows allows for a straightforward analytical determina-
tion of the velocity and temperature profiles. However,
when viscous heating is present, the solutions to be
determined are less simple and analytical methods based
either on perturbation expansions or on non-linear
extensions of the Frobenius method are needed. Pertur-
bation solutions are obtained in Refs. [7,8,10–12] with
reference to channel flows. The boundary conditions
considered on the walls of the channel are either uniform
temperature or uniform heat flux. As it is well known,
the latter boundary conditions imply, in the fully devel-
oped region, a linearly varying wall temperature in the
streamwise direction (when the viscous dissipation is ne-
glected). Dealing with non-linear governing equations
may imply non-uniqueness of the solution for a given
set of boundary conditions. Examples of dual solutions
have been discussed in Refs. [14,15] either for a clear
fluid or for a fluid-saturated porous medium.

The aim of the present paper is to analyze combined
forced and free flow in the fully developed region of a
vertical channel with isothermal walls kept at the same
temperature, the fluid properties being assumed as con-
stant. The viscous dissipation effect will be taken into ac-
count. The set of governing balance equations will be
reduced to a fourth-order ordinary differential equation
for the velocity field which will be solved both analyti-
cally and numerically. The analytical method will be
based on a power series expansion with respect to the
transverse coordinate. It will be shown that dual solu-
tions may arise for a prescribed mass flow rate. Compar-
isons with another approach to the same problem based
on a perturbation method by the first author [10] will be
performed.
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2. Model and governing equations

We consider the laminar fully developed flow in a
vertical channel bounded by isothermal plane walls both
kept at a temperature T0 (Fig. 1). The effect of viscous
dissipation is taken into account and the Boussinesq
approximation is adopted. A steady parallel flow regime
is assumed, so that the velocity field is given by
V = (U, 0,0).

The local mass balance equation reduces in this case
to oU/oX = 0 and implies U = U(Y). The momentum
balance according to the Boussinesq approximation
yields

l
d2U

dY 2
� oP
oX

þ qgbðT � T rÞ ¼ 0;
oP
oY

¼ 0; ð1a; bÞ

where P = p + gqX is the difference between the pressure
p and the hydrostatic pressure �gqX. The density q, the
dynamic viscosity l and the thermal expansion coeffi-
cient b are evaluated at a (not yet specified) reference
temperature Tr. The energy balance equation is
y

x

g

0

2 L

0T 0T

Fig. 1. Drawing of the channel.
k
o2T

oX 2
þ o2T

oY 2

� �
þ l

dU
dY

� �2

¼ 0. ð2Þ

The no slip conditions and the thermal boundary
conditions are

U jY¼�L ¼ 0; T jY¼�L ¼ T 0. ð3a; bÞ

We restrict our considerations in the present paper to
the solutions which are symmetric with respect to the
midplane Y = 0 of the channel. The possible existence
of non-symmetric flows in a channel bounded by iso-
thermal walls kept at the same temperature is beyond
the scope of the present paper. Accordingly, on the mid-
plane Y = 0, the symmetry conditions

dU
dY

����
Y¼0

¼ 0;
oT
oY

����
Y¼0

¼ 0; ð4a; bÞ

will be imposed.
Eq. (1b) implies P = P(X). Eq. (1a) solved with re-

spect to T yields

T ¼ T r þ
1

qgb
dP
dX

� l
qgb

d2U

dY 2
. ð5Þ

The boundary conditions (3b) and Eq. (5) imply that
dP/dX = constant and thus, similarly to the velocity
U, the temperature T depends only on the transverse
coordinate, i.e., T = T(Y). The above assumed symme-
try implies that it is sufficient to seek the solution only
in the half-channel 0 6 Y 6 L. Thus, the set of govern-
ing equations become

l
d2U

dY 2
� dP
dX

þ qgbðT � T rÞ ¼ 0; ð6Þ

k
d2T

dY 2
þ l

dU
dY

� �2

¼ 0; ð7Þ

UðLÞ ¼ 0; T ðLÞ ¼ T 0; ð8a; bÞ

dU
dY

����
Y¼0

¼ 0;
dT
dY

����
Y¼0

¼ 0. ð9a; bÞ

The general solution of Eqs. (6) and (7) for U and T

involves four constants of integration in addition to
the unknown value of the constant pressure gradient
dP/dX. Hence the four boundary conditions (8) and
(9) are not sufficient to determine these five unknown
quantities. In other words, from a mathematical point
of view Eqs. (6)–(9) represent an ill-posed (underdefined)
boundary value problem. Therefore, an additional con-
straint must be given in order to determine the solution
{U,T,dP/dX} of Eqs. (6)–(9). It is common practice in
duct flow studies to assume the mass flow rate as a pre-
scribed quantity. Hence, in the following, the average
fluid velocity in a channel section, namely

Um ¼ 1

2L

Z L

�L
UðY ÞdY ¼ 1

L

Z L

0

UðY ÞdY ; ð10Þ

will be considered as being prescribed.
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Eqs. (6) and (7) result in an ordinary differential
equation of the fourth order for U

d4U

dY 4
¼ qgb

k
dU
dY

� �2

. ð11Þ

Eqs. (8a), (9a) and (9b), in the latter case by taking
into account Eq. (5), lead to the following three boun-
dary conditions for U(Y)

UðLÞ ¼ 0; ð12Þ

dU
dY

����
Y¼0

¼ 0;
d3U

dY 3

����
Y¼0

¼ 0. ð13a; bÞ

As explained above, the missing fifth condition will be
replaced by the constraint (10) on the value of the aver-
age velocity Um. In this way, the problem (10)–(13) for
U = U(Y) becomes well posed.

Once the velocity U = U(Y) has been obtained, the
temperature field can be determined by integrating Eq.
(7) twice with respect to Y, namely

T ðY Þ ¼ T 0 þ
l
k

Z L

Y

Z ~Y

0

dUðY Þ
dY

� �2
dY

( )
d~Y . ð14Þ

Finally, after having obtained U(Y) and T(Y), one
can find the value of the constant dP/dX from Eq. (6)

dP
dX

¼ l
d2UðY Þ
dY 2

þ qgb T ðY Þ � T r½ �. ð15Þ

The right-hand side of Eq. (15) must be independent of
Y, so that it can be evaluated at any position in the range
0 6 Y 6 L.

The procedure described above, which allows one to
obtain U(Y), T(Y) and dP/dX, leads to two important
conclusions:

1. the fields U(Y) and T(Y) are determined without any
need to fix the reference temperature Tr in the
momentum balance equation;

2. the dimensional constant dP/dX depends on the
choice of the reference temperature Tr.
3. Dimensionless parameters and solution procedure

Let us define the following dimensionless quantities:

u ¼ U
Um

; y ¼ Y
L
; Ge ¼ 4Lgb

cp
;

Pr ¼ lcp
k

; Re ¼ 4LUm

m
; N ¼ GePrRe;

ð16Þ

where the Gebhart and Reynolds numbers are defined
with respect to the hydraulic diameter 4L of the channel.

The limiting case N ! 0 may correspond either to a
very small viscous dissipation heating or to negligible
buoyancy effects. In the problem under exam, these lim-
iting cases are physically related since buoyancy forces
are generated by the viscous dissipation effect in the fluid.
Indeed, the latter effect is significant only if the average
velocity Um is not too small. By employing the dimen-
sionless quantities defined in Eq. (16), the boundary
value problem (10)–(13) can be rewritten as follows:

d4u
dy4

¼ N
16

du
dy

� �2

; ð17Þ

ujy¼1 ¼ 0;
du
dy

����
y¼0

¼ 0;
d3u
dy3

����
y¼0

¼ 0; ð18a; b; cÞ

Z 1

0

uðyÞdy ¼ 1. ð19Þ

It can be easily verified that, in the limiting case N! 0,
Eqs. (17)–(19) admit a unique solution, namely

uðyÞ ¼ 3

2
1� y2
� �

. ð20Þ

Eq. (20) represents the well known Poiseuille velocity
profile which is the expected limit when buoyancy forces
become negligible.

When N 5 0, the solution of Eqs. (17)–(19) can be
found both analytically and numerically. Since Eq.
(17) involves only the derivatives of the dimensionless
velocity u(y) and thus it is convenient to introduce the
dimensionless function / = /(y),

/ðyÞ ¼ N
16

duðyÞ
dy

. ð21Þ

In this way, Eqs. (17)–(19) lead to the boundary value
problem

d3/
dy3

¼ /2; ð22Þ

/jy¼0 ¼ 0;
d2/
dy2

����
y¼0

¼ 0; ð23a; bÞ

Z 1

0

Z 1

y
/ð�yÞd�y

� �
dy ¼ � N

16
. ð24Þ

A procedure to determine the solution of Eqs. (22)–(24)
can be based for instance on a shooting method. To this
end, one first adds to Eqs. (23) formally the ‘‘missing’’
initial conditions for d//dy on y = 0. In this way, one
gets the well posed initial value problem

d3/
dy3

¼ /2; ð25Þ

/ð0Þ ¼ 0;
d/
dy

����
y¼0

¼ a;
d2/
dy2

����
y¼0

¼ 0. ð26a; b; cÞ

which, however, involves the arbitrary parameter a.
Then, by letting a vary over the real axis, one obtains
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a one-parameter family of solutions /(y;a) each of which
corresponding to a specific value of N that can be ob-
tained by using Eq. (24). Through this method, a func-
tion N(a) has been defined. In the next chapter, it will
be shown that the function N = N(a) is non-monotonic,
i.e., the same value of N may correspond to a pair of dif-
ferent values of a. As a consequence, one can conclude
that the solution of Eqs. (22)–(24) for a given N may
be not unique, but dual solutions may arise.
4. Analytical and numerical solution

4.1. Analytical solution

Let us look for the solution of Eqs. (25) and (26) in
the form of a power series of y

/ y; að Þ ¼
X1
n¼0

AnðaÞyn. ð27Þ

Thus, by substituting Eq. (27) into Eq. (25), we obtain
the following recursion equations for the coefficients
An(a):

Anþ3ðaÞ ¼
n!

ðnþ 3Þ!
Xn

k¼0

AkðaÞAn�kðaÞ; n ¼ 0; 1; 2; 3; . . .

ð28Þ

Now, the ‘‘initial conditions’’ /(0) = 0, / 0(0) = a and
/00(0) = 0 imply A0(a) = 0, A1(a) = a and A2(a) = 0,
respectively. Thus, from Eqs. (23) one easily infers that
the only non-vanishing coefficients of the series (27) are
A1(a) = a, A5(a), A9(a), A13(a), A17(a), . . . , i.e., A4n+1(a),
for n = 0,1,2,3, . . .Moreover, all the coefficients of high-
er order, A5(a), A9(a), A13(a), . . . can be calculated in
terms of A1(a) = a successively. For the first of them,
we obtain:

A5ðaÞ ¼
2!

5!
A1ðaÞ2 ¼

a2

60
;

A9ðaÞ ¼
6!

9!
½A1ðaÞA5ðaÞ þ A5ðaÞA1ðaÞ� ¼

a3

15120
;

A13ðaÞ ¼
10!

13!
½A1ðaÞA9ðaÞ þ A5ðaÞ2 þ A9ðaÞA1ðaÞ�

¼ 31a4

129729600
;

A17ðaÞ ¼
14!

17!
½A1ðaÞA13ðaÞ þ A5ðaÞA9ðaÞ

þ A9ðaÞA5ðaÞ þ A13ðaÞA1ðaÞ�

¼ 29a5

44108064000
;

..

.

ð29Þ

Thus, by putting n ! 4n � 2 in Eq. (28) we obtain for
the non-vanishing coefficients with n > 1 the recursive
relation
A4nþ1ðaÞ ¼
ð4n� 2Þ!
ð4nþ 1Þ!

X4n�2

k¼0

AkðaÞA4n�k�2ðaÞ;

n ¼ 1; 2; 3; . . . ð30Þ

However, on the right-hand site of Eq. (30), the first
term A0(a)A4n�2(a) and the last term A4n�2(a)A0(a) are
zero. Thus, Eq. (30) becomes

A4nþ1ðaÞ ¼
ð4n� 2Þ!
ð4nþ 1Þ!

X4n�3

k¼1

AkðaÞA4n�k�2ðaÞ;

n ¼ 1; 2; 3; . . . ð31Þ

Eq. (29) suggest that it is convenient to substitute the
coefficients An(a) with some new coefficients Bn defined
by

A4nþ1ðaÞ ¼ anþ1B4nþ1. ð32Þ

Thus, we obtain

B1 ¼ 1

and

B4nþ1 ¼
ð4n� 2Þ!
ð4nþ 1Þ!

X4n�3

k¼1

BkB4n�k�2; n ¼ 1; 2; 3; . . . ð33Þ

In this way, we have

B5 ¼
1

60
¼ 1.66666� 10�2;

B9 ¼
1

15120
¼ 6.61375� 10�5;

B13 ¼
31

129729600
¼ 2.38958� 10�7;

B17 ¼
29

44108064000
¼ 6.57476� 10�10;

..

.

ð34Þ

and the solution (27) of the initial value /-problem (25)
and (26) becomes

/ðy; aÞ ¼
X1
n¼0

B4nþ1a
nþ1y4nþ1. ð35Þ

Among the one-parameter family of solutions /(y;a),
the solution of the boundary value problem (22)–(24)
is selected by prescribing the constraint (24). On account
of Eq. (35), this constraint can be rewritten asX1
n¼0

B4nþ1

4nþ 3
anþ1 ¼ � N

16
. ð36Þ

The parameter a defined by Eq. (26b) can also be related
via Eq. (21) to the second derivative of u(y) evaluated in
y = 0 as follows:

a
N
¼ 1

16

d2u
dy2

����
y¼0

. ð37Þ



Fig. 2. Possible solutions of Eqs. (17)–(19) represented
parametrically in the plane (a/N,N). The upper frame refers to
the range �12 < a/N < 12, while the lower frame refers to
�1 < a/N < 0.

Fig. 3. First 60 coefficients B4n+1a
n+1 of the series given in Eq.

(35) plotted for a = �400 (upper frame) and for a = 400 (lower
frame).
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Eqs. (20) and (37) imply that, in the limit N ! 0, the
ratio a/N tends to �3/16 = �0.1875. The constraint
given by Eq. (36) defines the set of possible solutions
of the boundary value problem (17)–(19). In Fig. 2, this
set of solutions is represented parametrically in the plane
(a/N,N). An analysis of this figure leads to the following
inferences.

• There exists an absolute maximum for the parameter
N above which no solution is allowed. This absolute
maximum is N = Nmax = 228.12869 and corresponds
to the value a/N = �0.41708747.

• For N ! 0, a unique value of a/N and hence of d2u/
dy2 at y = 0 exists. Indeed, in this limit, the curve rep-
resenting the relation between a/N and N displays a
horizontal asymptote for a/N ! ± 1.

• For each N 5 0 smaller than Nmax, two different val-
ues of a/N and hence of d2u/dy2 at y = 0 exist. As a
consequence, dual solutions exist for every choice
of N < Nmax, except for the limit N ! 0, where the
solution is unique (Poiseuille flow).

The convergence of the series solution expressed by
Eq. (35) is very fast. In fact, in most cases, the first 60
terms in the expansion are sufficient to obtain more than
10 digits accuracy. A drawing of the trend of the coeffi-
cients in the series expansion (35) is given in Fig. 3. This
figure refers to a pair of very extreme cases (a = �400
and a = 400) and reveals that the coefficients B4n+1a

n+1

tend to zero quite rapidly.

4.2. Numerical solution

The initial value problem (25) and (26) can easily be
solved numerically by using any standard software
package for ordinary differential equations as, for in-
stance, Mathematica 4.2 (�Wolfram Research, Inc.).
The software allows one to get numerical solutions of
ordinary differential equations through the use of the
function NDSolve. The numerical solution and the ana-
lytical solution can be compared by testing the corre-
spondence between a and N. This correspondence is
defined by the integral constraint (24) or, in the analyt-
ical solution, by Eq. (36). A comparison performed in
the range �250 6 a 6 �5, reveals a complete agreement
within six digits between the values of N evaluated
numerically and those evaluated analytically. Values of
parameter N in the range �250 6 a 6 �5 are reported
in Table 1.



Table 1
Relation between parameters a and N

a N a N

�250 �191.085 �110 223.636
�230 �94.4847 �90 227.571
�210 �9.88583 �70 214.352
�190 62.6292 �50 182.017
�170 122.803 �30 128.118
�150 170.185 �10 49.6175
�130 204.103 �5 25.7262
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5. Velocity distribution, temperature distribution and

axial pressure gradient

From Eqs. (18a), (21) and (35), the dimensionless
velocity u(y) can be evaluated as

uðyÞ ¼ � 16

N

Z 1

y
/ðy; aÞdy

¼ � 16

N

X1
n¼0

B4nþ1anþ1

4nþ 2
ð1� y4nþ2Þ. ð38Þ

As a consequence of Eqs. (14), (16), (21), (33) and (35),
the temperature field can be evaluated as

T ðY Þ ¼ T 0 þ
256lU 2

m

k
hðyÞ; ð39Þ

where h(y) is a dimensionless function defined as

hðyÞ ¼ 1

N2

Z 1

y

Z ~y

0

/ð�y; aÞ2 d�y
� �

d~y

¼ 1

4N2

X1
n¼0

Xn

m¼0

B4mþ1B4ðn�mÞþ1

" #

� anþ2

ð4nþ 3Þðnþ 1Þ ½1� y4ðnþ1Þ�

¼ 1

N2

X1
n¼1

ð4nþ 1ÞB4nþ1a
nþ1½1� y4n�. ð40Þ

Function h(y) can be considered as a dimensionless
temperature.

Once the reference temperature Tr has been chosen,
the constant dP/dX can be evaluated by employing
Eq. (15). Following Ostrach [6], one can set the reference
temperature equal to the temperature of the static equi-
librium state of the system, which in the present case
means the wall temperature, Tr = T0. Then, by employ-
ing Eq. (15) with Y = L, together with Eqs. (16) and
(21), one obtains

dP
dX

¼ l
d2U

dY 2

����
Y¼L

¼ 16lUm

L2N

d/
dy

����
y¼1

¼ � 16lUm

L2
k; ð41Þ

where the parameter k, given by

k ¼ �1

N
d/
dy

����
y¼1

; ð42Þ
represents the dimensionless axial pressure gradient. On
account of Eq. (35), the parameter k can be expressed as

k ¼ � 1

N

X1
n¼0

ð4nþ 1ÞB4nþ1a
nþ1. ð43Þ

Taking into account Eqs. (39) and (40), a dimensionless
heat transfer coefficient h is obtained as

h ¼ �dh
dy

����
y¼1

¼ 4

N2

X1
n¼1

ð4nþ 1ÞnB4nþ1a
nþ1. ð44Þ

The effect of viscous dissipation is characterized by the
Brinkman number Br which can be defined as

Br ¼ lU 2
m=k

T ð0Þ � T 0

. ð45Þ

Thus, from Eqs. (39) and (40) one immediately obtains

1

Br
¼ 256hð0Þ ¼ 256

N2

X1
n¼1

ð4nþ 1ÞB4nþ1a
nþ1. ð46Þ

As a consequence of Eqs. (20), (21) and (40)–(46), in the
limit N ! 0, the dimensionless temperature h(y) together
with the parameters k, h and Br can be expressed as

hðyÞ ¼ 1

256

Z 1

y

Z ~y

0

duð�yÞ
d�y

� �2

d�y

" #
d~y ¼ 3ð1� y4Þ

1024
; ð47Þ

k ¼ � 1

16

d2u
dy2

����
y¼1

¼ 3

16
¼ 0.1875; ð48Þ

h ¼ �dh
dy

����
y¼1

¼ 3

256
¼ 0.01171875; ð49Þ

Br ¼ 1

256hð0Þ ¼
4

3
ffi 1.333333. ð50Þ

Eq. (47) predicts a non-uniform temperature profile. In
fact, it is well known that, for a duct with isothermal
walls, different behaviours are expected if the viscous
dissipation effect is neglected or if this effect is taken into
account. In the first case, the temperature profile far
from the inlet section tends to become axially invariant
and uniform. In the second case, the temperature far
from the inlet section tends to assume a non-uniform
axially invariant profile. Indeed, far from the inlet sec-
tion, the thermal energy generated through viscous heat-
ing diffuses transversally through the fluid and is
transferred to the external environment. This behaviour
is well known and widely treated in the literature; it has
been observed both in the case of forced convection and
in the case of mixed convection.
6. Discussion of the results

In Section 4, it has been pointed out that, for a fixed
non-vanishing value of the governing parameter N lower



Fig. 5. Dual profiles of u(y)/u(0) and h(y)/h(0) for N = 20.
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than Nmax = 228.12869, two possible solutions of the
governing equations exist. The case N = 0 corresponds
to the Poiseuille flow solution. Indeed, the latter solution
holds in the limit of negligible buoyancy effects, i.e., in
the limit of forced convection. The set of allowed solu-
tions is clearly represented in Fig. 2. This figure shows
that there exists a first branch in the set of solutions
which corresponds to the interval �0.417087 6 a/N < 0
and to all the allowed values of N, namely N 6 Nmax.
This first branch includes the Poiseuille flow solution.
There exists also a second branch in the set of solutions
which corresponds either to the interval a/N 6

�0.417087 or to the interval a/N > 0 and to all the
allowed non-vanishing values of N, namely N 6 Nmax.
Except for the case N = 0, to each solution in the first
branch there corresponds a solution in the second
branch having the same value of N. These dual solutions
are different for any N < Nmax, while they are coincident
for N = Nmax.

In Fig. 4, plots of u(y) and h(y) are reported for the
case N = Nmax. This figure shows that a slight flow rever-
sal occurs next to the boundary wall (y = 1). Indeed,
there exists a region in the neighborhood of y = 1 where
the dimensionless velocity is negative, i.e., where the
fluid flows in the direction opposite to the mean flow.

In Figs. 5 and 6, the dual solutions corresponding to
N = 20 and N = �20 are represented. These figures show
Fig. 4. Plots of u(y) and N2h(y), for N = Nmax = 228.1287.

Fig. 6. Dual profiles of u(y)/u(0) and h(y)/h(0) for N = �20.
that, while for the first branch solution the dimensionless
velocity field is only slightly different from the Poiseuille



Table 2
Values of Ge, Pr and Remax for a channel with L = 1 cm

Ge Pr Remax

Water (Tr = 293.15 K) 1.970 · 10�8 7.07 1.638 · 109

Unused engine oil
(Tr = 260 K)

1.560 · 10�7 1.45 · 105 1.012 · 104
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velocity profile, the second branch solution yields a com-
pletely different velocity distribution. The latter displays
a very strong flow reversal next to the boundary wall.
The dimensionless temperature field for the first branch
solution has a qualitative behavior similar to that for the
second branch solution, but the values of h are com-
pletely different. Indeed, the ratio between the values
of h(0) for the second branch solution and for the first
branch solution is very high and increases rapidly as N
decreases.

The value Nmax is the upper bound of N and is posi-
tive number, i.e., it corresponds to upward flow. This
circumstance means that, in the case of upward flow,
there exists a critical value of the Reynolds number
which cannot be exceeded, namely

Remax ¼
Nmax

GePr
¼ 228.12869

GePr
. ð51Þ
Fig. 7. Plots of Br versus N for the first branch solution and for
the second branch solution.
Eq. (51) implies that there exists a maximum average
velocity U ðmaxÞ

m for upward flow. On the other hand, no
restrictions are implied by Fig. 2 for downward flow.
Some data for a channel with L = 1 cm and for two dif-
ferent fluids are given in Table 2. These data show that,
in most practical cases, the critical value Remax is very
high. In fact, the flow is expected to become turbulent
for values of Re much lower than Remax.

The differences between the first branch solution and
the second branch solution corresponding to the same
value of N become smaller as the value of N approaches
its threshold value Nmax. As a consequence, when N is in
the neighborhood of Nmax, the differences between the
dual solutions are so small that even a minor external
perturbation may cause stochastic oscillations between
one solution and the other. As pointed out above, this
kind of instability is unlikely to be revealed since other
instabilities exist for much smaller values of N. Indeed,
a doubling of the solution corresponding to a given
value of N occurs even if N is not in the vicinity of the
threshold value. However, when N is much smaller than
the threshold value, the differences occurring between
the dual solutions are so significant that only major
external disturbances may cause the transition from
one flow regime to the other.
Fig. 8. Plots of h versus N for the first branch solution and for
the second branch solution.



Fig. 9. Plots of k versus N for the first branch solution and for
the second branch solution.
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Figs. 7–9 display the behavior of the dimensionless
quantities Br, h and k versus N with reference either to
the first branch solution or to the second branch solu-
tion. Fig. 7 shows that the Brinkman number evaluated
through the first branch solution is a decreasing function
of N, while the behavior of Br versus N for the second
branch solution is non-monotonic. In Ref. [10], the val-
ues of Br versus N for the same system have been evalu-
ated through a perturbation method employing the
Poiseuille flow as the base solution and N as the perturba-
tion parameter. A comparison between the values of Br
evaluated in the present paper for the first branch solu-
tion and those evaluated in Ref. [10] reveals perfect
agreement. However, the perturbation method allows
one to obtain only the first branch solutions and only
within the radius of convergence of the perturbation
expansion, which has been estimated in Ref. [10] as
jNj < 227. It is an interesting circumstance that the esti-
mated upper bound of the convergence set for the pertur-
bation method almost coincide with the maximum
allowed value of N evaluated in the present paper,
namely Nmax = 228.12869. However, all the first branch
solutions with N < �Nmax are not covered by the pertur-
bation method discussed in Ref. [10]. As is well known,
the convergence domain of a perturbation method does
not necessarily include all the possible solutions of a
boundary value problem. This feature of the perturba-
tion method is closely related to the following character-
istic of analytic functions. An analytic function may
coincide with its Laurent expansion around a given point
only for a proper subset of its domain of definition.

Figs. 8 and 9 show that, for the second branch solu-
tion, the parameters h and k are singular in the limit
N ! 0. These singularities correspond to the absence
of a second branch solution for N = 0. Parameter k
may exhibit negative values. These negative values cor-
respond to flow regimes such that the quantity P, i.e.,
the difference between the pressure and the hydrostatic
pressure, increases in the direction of the mean flow.
7. Concluding remarks

Mixed convection flow in a vertical channel with iso-
thermal walls at a given temperature T0 has been ana-
lyzed by taking into account the effect of viscous
heating. The local mass, momentum and energy balance
equations have been written according to the Boussinesq
approximation, without fixing explicitly the reference
temperature. The solution procedure revealed that nei-
ther the velocity field nor the temperature field is influ-
enced by the choice of the reference temperature. On
the other hand, a choice of the reference temperature
was needed in order to determine the axial pressure
gradient. The governing equations have led to a
fourth-order ordinary differential equation for the
dimensionless velocity field; it has been solved both by
an analytical method and by a numerical method. The
dimensionless solution depends on a unique dimension-
less parameter, N. This parameter coincides with the
product of the Gebhart number, the Prandtl number
and the Reynolds number. An analysis of the solutions
of the governing equations has shown the following
important features.

• The solution exists only for values of the parameter N
smaller than Nmax = 228.12869. This circumstance
implies that the Reynolds number has an upper
bound.

• Except for the cases N = Nmax and N = 0, a pair of
different solutions exists for any fixed value of N.
The case N = 0 corresponds to a negligible Gebhart
number, i.e., to a negligible buoyancy effect (forced
convection). In the case N = 0, the unique solution
corresponds to the Poiseuille velocity profile.

• Two branches occur in the solution space. The first
branch includes the Poiseuille flow solution. To each
solution in the second branch there corresponds a
solution in the first branch having the same value
of N. A comparison with a previous solution
obtained with a perturbation method [10] reveals per-
fect agreement with the first branch solution. On the
other hand, the second branch solutions could not be
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found by employing perturbation methods. A signif-
icant element is the coincidence of the radius of con-
vergence estimated for the perturbation method and
the upper bound Nmax = 228.12869 for the existence
of solutions.
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